$ - \sum_{n=1}^\infty \frac{(-1)^n}{2^n-1} =? \sum_{n=1}^\infty
\frac{1}{2^n+1}$ – mathoverflow.net
Numerical evidence suggests: $$ - \sum_{n=1}^\infty \frac{(-1)^n}{2^n-1}
=? \sum_{n=1}^\infty \frac{1}{2^n+1} \approx 0.764499780348444 $$ Couldn't
find cancellation via rearrangement. For the ...
No comments:
Post a Comment